
EXHIBIT 1

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 24 of 215

Annotated XY Token Smart Contract Code

Note: Below is the XY Token Smart Contract code deployed to Ethereum Mainnet on December

6th, 2021. Descriptive annotations are provided in red italics directly preceding the code in bold.

+

pragma solidity 0.8.2;

abstract contract Context {

 function _msgSender() internal view virtual returns (address) {

 return msg.sender;

 }

 function _msgData() internal view virtual returns (bytes calldata) {

 return msg.data;

 }

}

// Part: OpenZeppelin/openzeppelin-contracts@4.3.2/IERC20

 * Interface of the ERC20 standard as defined in the EIP.

interface IERC20 {

 * Returns the amount of tokens in existence.

 function totalSupply() external view returns (uint256);

 * Returns the amount of tokens owned by `account`.

 function balanceOf(address account) external view returns (uint256);

 * Moves `amount` tokens from the caller's account to `recipient`.

 function transfer(address recipient, uint256 amount) external returns (bool);

 * Returns the remaining number of tokens that `spender` will be allowed to spend on behalf

of `owner` through {transferFrom}.

 * This is zero by default.

 * This value changes when {approve} or {transferFrom} are called.

 function allowance(address owner, address spender) external view returns (uint256);

 * Sets `amount` as the allowance of `spender` over the caller's tokens.

 function approve(address spender, uint256 amount) external returns (bool);

 * Moves `amount` tokens from `sender` to `recipient` using the allowance mechanism.

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 25 of 215

 * `amount` is then deducted from the caller's allowance.

 function transferFrom(

 address sender,

 address recipient,

 uint256 amount

) external returns (bool);

 * Emitted when `value` tokens are moved from one account (`from`) to another (`to`).

 * Note that `value` may be zero.

 event Transfer(address indexed from, address indexed to, uint256 value);

 * Emitted when the allowance of a `spender` for an `owner` is set by a call to {approve}.

 * `value` is the new allowance.

 event Approval(address indexed owner, address indexed spender, uint256 value);

}

// Part: OpenZeppelin/openzeppelin-contracts@4.3.2/IERC20Metadata

 * Interface for the optional metadata functions from the ERC20 standard.

interface IERC20Metadata is IERC20 {

 * Returns the name of the token.

 function name() external view returns (string memory);

 * Returns the symbol of the token.

 function symbol() external view returns (string memory);

 * Returns the decimals places of the token.

 function decimals() external view returns (uint8);

}

// Part: OpenZeppelin/openzeppelin-contracts@4.3.2/Ownable

 * Contract module which provides a basic access control mechanism, where there is an

account (an owner) that can be granted exclusive access to specific functions.

 * By default, the owner account will be the one that deploys the contract.

 * This can later be changed with {transferOwnership}.

abstract contract Ownable is Context {

 address private _owner;

 event OwnershipTransferred(address indexed previousOwner, address indexed

newOwner);

 * Initializes the contract setting the deployer as the initial owner.

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 26 of 215

 constructor() {

 _setOwner(_msgSender());

 }

 * Returns the address of the current owner.

 * Current owner’s address is 0x00 address,

a burn address

 function owner() public view virtual returns (address) {

 return _owner;

 }

 * Throws if called by any account other than the owner.

 modifier onlyOwner() {

 require(owner() == _msgSender(), "Ownable: caller is not the owner");

 _;

 }

 * Leaves the contract without owner.

 * It will not be possible to call`onlyOwner` functions anymore.

 * Can only be called by the current owner.

 function renounceOwnership() public virtual onlyOwner {

 _setOwner(address(0));

 }

 * Transfers ownership of the contract to a new account (`newOwner`).

 * Can only be called by the current owner.

 function transferOwnership(address newOwner) public virtual onlyOwner {

 require(newOwner != address(0), "Ownable: new owner is the zero address");

 _setOwner(newOwner);

 }

 function _setOwner(address newOwner) private {

 address oldOwner = _owner;

 _owner = newOwner;

 emit OwnershipTransferred(oldOwner, newOwner);

 }

}

// Part: OpenZeppelin/openzeppelin-contracts@4.3.2/ERC20

 * Implementation of the {IERC20} interface.

contract ERC20 is Context, IERC20, IERC20Metadata {

 mapping(address => uint256) private _balances;

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 27 of 215

 mapping(address => mapping(address => uint256)) private _allowances;

 uint256 private _totalSupply;

 string private _name;

 string private _symbol;

 * Sets the values for {name} and {symbol}.

 * All two of these values are immutable: they can only be set once during construction.

 constructor(string memory name_, string memory symbol_) {

 name = name;

 symbol = symbol;

 }

 * Returns the name of the token.

 function name() public view virtual override returns (string memory) {

 return _name;

 }

 * Returns the symbol of the token, usually a shorter version of the name.

 function symbol() public view virtual override returns (string memory) {

 return _symbol;

 }

 * Returns the number of decimals used to get its user representation.

 function decimals() public view virtual override returns (uint8) {

 return 18;

 }

 * See {IERC20-totalSupply}.

 function totalSupply() public view virtual override returns (uint256) {

 return _totalSupply;

 }

 * See {IERC20-balanceOf}.

 function balanceOf(address account) public view virtual override returns (uint256) {

 return _balances[account];

 }

 * See {IERC20-transfer}.

 * Requirements:

 * - `recipient` cannot be the zero address.

 * - the caller must have a balance of at least `amount`.

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 28 of 215

 function transfer(address recipient, uint256 amount) public virtual override returns

(bool) {

 _transfer(_msgSender(), recipient, amount);

 return true;

 }

 * See {IERC20-allowance}.

 function allowance(address owner, address spender) public view virtual override

returns (uint256) {

 return _allowances[owner][spender];

 }

 * See {IERC20-approve}.

 * Requirements:

 * - `spender` cannot be the zero address.

 function approve(address spender, uint256 amount) public virtual override returns

(bool) {

 _approve(_msgSender(), spender, amount);

 return true;

 }

 * See {IERC20-transferFrom}.

 * Emits an {Approval} event indicating the updated allowance.

 * Requirements:

 * - `sender` and `recipient` cannot be the zero address.

 * - `sender` must have a balance of at least `amount`.

 * - the caller must have allowance for ``sender``'s tokens of at least `amount`.

 function transferFrom(

 address sender,

 address recipient,

 uint256 amount

) public virtual override returns (bool) {

 _transfer(sender, recipient, amount);

 uint256 currentAllowance = _allowances[sender][_msgSender()];

 require(currentAllowance >= amount, "ERC20: transfer amount exceeds

allowance");

 unchecked {

 _approve(sender, _msgSender(), currentAllowance - amount);

 }

 return true;

 }

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 29 of 215

 * Atomically increases the allowance granted to `spender` by the caller.

 * Emits an {Approval} event indicating the updated allowance.

 * Requirements:

 * - `spender` cannot be the zero address.

 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] +

addedValue);

 return true;

 }

 * Atomically decreases the allowance granted to `spender` by the caller.

 * Emits an {Approval} event indicating the updated allowance.

 * Requirements:

 * - `spender` cannot be the zero address.

 * - `spender` must have allowance for the caller of at least `subtractedValue`.

 function decreaseAllowance(address spender, uint256 subtractedValue) public virtual

returns (bool) {

 uint256 currentAllowance = _allowances[_msgSender()][spender];

 require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below

zero");

 unchecked {

 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

 }

 return true;

 }

 * Moves `amount` of tokens from `sender` to `recipient`.

 * This internal function is equivalent to {transfer}

 * Emits a {Transfer} event.

 * Requirements:

 * - `sender` cannot be the zero address.

 * - `recipient` cannot be the zero address.

 * - `sender` must have a balance of at least `amount`.

 function _transfer(

 address sender,

 address recipient,

 uint256 amount

) internal virtual {

 require(sender != address(0), "ERC20: transfer from the zero address");

 require(recipient != address(0), "ERC20: transfer to the zero address");

 _beforeTokenTransfer(sender, recipient, amount);

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 30 of 215

 uint256 senderBalance = _balances[sender];

 require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");

 unchecked {

 _balances[sender] = senderBalance - amount;

 }

 _balances[recipient] += amount;

 emit Transfer(sender, recipient, amount);

 _afterTokenTransfer(sender, recipient, amount);

 }

 /** Creates `amount` tokens and assigns them to `account`, increasing the total supply.

 * Emits a {Transfer} event with `from` set to the zero address.

 * Requirements:

 * - `account` cannot be the zero address.

 function _mint(address account, uint256 amount) internal virtual {

 require(account != address(0), "ERC20: mint to the zero address");

 _beforeTokenTransfer(address(0), account, amount);

 _totalSupply += amount;

 _balances[account] += amount;

 emit Transfer(address(0), account, amount);

 _afterTokenTransfer(address(0), account, amount);

 }

 * Destroys `amount` tokens from `account`, reducing the total supply.

 * Emits a {Transfer} event with `to` set to the zero address.

 * Requirements:

 * - `account` cannot be the zero address.

 * - `account` must have at least `amount` tokens.

 function _burn(address account, uint256 amount) internal virtual {

 require(account != address(0), "ERC20: burn from the zero address");

 _beforeTokenTransfer(account, address(0), amount);

 uint256 accountBalance = _balances[account];

 require(accountBalance >= amount, "ERC20: burn amount exceeds balance");

 unchecked {

 _balances[account] = accountBalance - amount;

 }

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 31 of 215

 _totalSupply -= amount;

 emit Transfer(account, address(0), amount);

 _afterTokenTransfer(account, address(0), amount);

 }

 * Sets `amount` as the allowance of `spender` over the `owner` s tokens.

 * This internal function is equivalent to `approve`

 * Emits an {Approval} event.

 * Requirements:

 * - `owner` cannot be the zero address.

 * - `spender` cannot be the zero address.

 function _approve(

 address owner,

 address spender,

 uint256 amount

) internal virtual {

 require(owner != address(0), "ERC20: approve from the zero address");

 require(spender != address(0), "ERC20: approve to the zero address");

 _allowances[owner][spender] = amount;

 emit Approval(owner, spender, amount);

 }

 * Hook that is called before any transfer of tokens. This includes minting and burning.

 * Calling conditions:

 * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens will be transferred to

`to`.

 * - when `from` is zero, `amount` tokens will be minted for `to`.

 * - when `to` is zero, `amount` of ``from``'s tokens will be burned.

 * - `from` and `to` are never both zero.

 function _beforeTokenTransfer(

 address from,

 address to,

 uint256 amount

) internal virtual {}

 * Hook that is called after any transfer of tokens. This includes minting and burning.

 * Calling conditions:

 * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens has been

transferred to `to`.

 * - when `from` is zero, `amount` tokens have been minted for `to`.

 * - when `to` is zero, `amount` of ``from``'s tokens have been burned.

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 32 of 215

 * - `from` and `to` are never both zero.

 function _afterTokenTransfer(

 address from,

 address to,

 uint256 amount

) internal virtual {}

}

// File: XYToken.sol

/// @title XYToken is the XY Finance governance token

contract XYToken is ERC20, Ownable {

 /// This contract should be deployed on all periphery chains.

 /// - On Ethereum, `amount` is set to `100,000,000 * 1e18` and `renounceOwnership` should

be called right after the contract is deployed, to make sure the cap is `100,000,000 * 1e18`.

 /// - On other chains, `amount` is set to `0`. The contract is served as a XY Token bridge

through mint-and-burn.

 /// @param name XY Token name

 /// @param symbol XY Token symbol

 /// @param vault Address where initial `amount` XY Token is sent

 /// @param amount Amount of XY Token is minted when the contract is deployed

 constructor(string memory name, string memory symbol, address vault, uint256

amount) ERC20(name, symbol) {

 _mint(vault, amount);

 }

 mapping (address => bool) public isMinter;

 modifier onlyMinter {

 require(isMinter[msg.sender], "ERR_NOT_MINTER");

 _;

 }

Gives “address minter” minting privileges

 function setMinter(address minter, bool _isMinter) external onlyOwner {

 isMinter[minter] = _isMinter;

 emit SetMinter(minter, _isMinter);

 }

Function mints amount to associated account

 function mint(address account, uint256 amount) external onlyMinter {

 _mint(account, amount);

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 33 of 215

 }

Function will burn amount from account balance

 function burn(uint256 amount) external {

 _burn(msg.sender, amount);

 }

 event SetMinter(address minter, bool isMinter);

}

Case 2:22-cv-01009-TL Document 67-1 Filed 03/09/23 Page 34 of 215

